Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We define a state space and a Markov process associated to the stochastic quantisation equation of Yang–Mills–Higgs (YMH) theories. The state space$$\mathcal{S}$$ is a nonlinear metric space of distributions, elements of which can be used as initial conditions for the (deterministic and stochastic) YMH flow with good continuity properties. Using gauge covariance of the deterministic YMH flow, we extend gauge equivalence ∼ to$$\mathcal{S}$$ and thus define a quotient space of “gauge orbits”$$\mathfrak {O}$$ . We use the theory of regularity structures to prove local in time solutions to the renormalised stochastic YMH flow. Moreover, by leveraging symmetry arguments in the small noise limit, we show that there is a unique choice of renormalisation counterterms such that these solutions are gauge covariant in law. This allows us to define a canonical Markov process on$$\mathfrak {O}$$ (up to a potential finite time blow-up) associated to the stochastic YMH flow.more » « less
-
Abstract We consider the directed mean curvature flow on the plane in a weak Gaussian random environment. We prove that, when started from a sufficiently flat initial condition, a rescaled and recentred solution converges to the Cole–Hopf solution of the KPZ equation. This result follows from the analysis of a more general system of nonlinear SPDEs driven by inhomogeneous noises, using the theory of regularity structures. However, due to inhomogeneity of the noise, the “black box” result developed in the series of works cannot be applied directly and requires significant extension to infinite‐dimensional regularity structures. Analysis of this general system of SPDEs gives two more interesting results. First, we prove that the solution of the quenched KPZ equation with a very strong force also converges to the Cole–Hopf solution of the KPZ equation. Second, we show that a properly rescaled and renormalised quenched Edwards–Wilkinson model in any dimension converges to the stochastic heat equation.more » « less
-
Abstract We define a natural state space and Markov process associated to the stochastic Yang–Mills heat flow in two dimensions. To accomplish this we first introduce a space of distributional connections for which holonomies along sufficiently regular curves (Wilson loop observables) and the action of an associated group of gauge transformations are both well-defined and satisfy good continuity properties. The desired state space is obtained as the corresponding space of orbits under this group action and is shown to be a Polish space when equipped with a natural Hausdorff metric. To construct the Markov process we show that the stochastic Yang–Mills heat flow takes values in our space of connections and use the “DeTurck trick” of introducing a time dependent gauge transformation to show invariance, in law, of the solution under gauge transformations. Our main tool for solving for the Yang–Mills heat flow is the theory of regularity structures and along the way we also develop a “basis-free” framework for applying the theory of regularity structures in the context of vector-valued noise – this provides a conceptual framework for interpreting several previous constructions and we expect this framework to be of independent interest.more » « less
An official website of the United States government
